DOMES IN THE WORLD

Cultural Identity and Symbolism
Geometric and Formal Genesis
Construction, Identification, Conservation

Congress Proceedings
Florence, March 19-23, 2012

G. Tampone, R. Corazzi, E. Mandelli
Scientific Editors

NARDINI EDITORE

The International Congress “Domes in the World”, held with the High Patronage of the President of the Italian Republic, is part of the “90 Days for Intercultural Dialogue” Programme conceived and promoted by Fondazione Romualdo Del Blanco® - Life Beyond Tourism® and included in UNESCO’s International Year for Rapprochement of Cultures Programme
The views expressed herein are those of the individual authors and do not necessarily reflect the views of congress organisers.

The intellectual property and the responsibility of the English version of the papers reside with the authors.
DOMES IN THE WORLD
Symbolism and Cultural Identity, Geometric and Formal Genesis,
Construction, Identification, Conservation

Proceedings of the International Congress
DOMES IN THE WORLD
Florence, 19th – 23rd March, 2012

(the Congress is part of the “90 Days for Intercultural Dialogue” Programme, conceived and promoted by Fondazione Romualdo Del Bianco®-Life Beyond Tourism® and included in UNESCO’s International Year for Rapprochement of Cultures Programme)

Gennaro Tampone, Roberto Corazzi, Emma Mandelli
Scientific Editors

NARDINI EDITORE
BODIES PROMOTING AND ORGANIZING
THE INTERNATIONAL CONGRESS “DOMES IN THE WORLD”

Fondazione Romualdo Del Bianco®-Life Beyond Tourism®

The Fondazione Romualdo Del Bianco®-Life Beyond Tourism® is a non-profit Florentine institution endorsing an array of cultural initiatives in order to encourage the intercultural dialogue, to enhance knowledge, mutual understanding and peaceful collaboration and to support cultural diversity in its tangible and intangible dimension, through an extensive network of over 450 universities, academies, libraries, museums, embassies, along with public and private cultural institutions and organizations from 60 countries in 5 continents.

Recently, after 20 years of activity, the Foundation elaborated a new concept of the cultural heritage as an instrument of understanding among cultures. According to this orientation, named Life Beyond Tourism®, cultural heritage is not only to be safeguarded and enhanced, but also to be “used and enjoyed” to foster intercultural dialogue; consequently, tourist is a “potential harbinger of knowledge and of intercultural dialogue” and therefore “the tourist destination is a workshop of knowledge, providing all visitors with an opportunity for cultural growth”.

Life Beyond Tourism® Non Profit Portal (www.lifebeyondtourism.org/new/) gathers the cultural expressions representing a given region to provide a good picture of its “cultural personality” resulting from the interaction between its cultural heritage and ongoing developments. The aim of the portal is to convey a territory’s specific features and to emphasize the way in which tangible and intangible heritage is combined to human and environmental levels. The portal is addressed to all cultural institutions, companies, professional and individuals who share the philosophy of the portal.

Università di Firenze, Dipartimento di Architettura - Disegno, Storia, Progetto

The Department of Architecture – Design History Project of the University of Florence develops its research activities according to the following six interest groups:
- Architecture and City section: studies the redefinition of techniques and teaching methods of projects on various levels;
- Architecture and Context section: primarily committed to morphological type research and related design experimentation;
- Architecture and Innovation section: mainly concerned with urban and architectural interiors, industrial archaeology and museology;
- Architectural Sites section: develops the analysis of the legacy of the masters, and the relationship with places of tradition, seeks to measure the deterioration suffered by the codes, rules and instruments of urban and architectural composition;
- Architecture and Design section: develops and tests research on scientific innovations in the field and in the representation of architecture and environment using the most up-to-date technological equipment;
- Architecture and City History section: develops research regarding Western architecture building elements of different periods.

Collegio degli Ingegneri della Toscana

The Tuscan College of Engineers (Collegio degli Ingegneri della Toscana), founded in 1876, is a non-profit cultural Association created for the purpose of disseminating technical-scientific knowledge in the field of engineering and architecture. These aims are achieved by means of conferences, visits, debates, seminars, courses and other pertinent activities. It publishes the “bollettino ingegneri”, a monthly magazine on engineering and architecture which was founded in 1953 and original scientific and technical articles, the reference price list for building activities and a guide of building categories and codes. The Association acts through the subsidiary company Collegio degli Ingegneri della Toscana s.r.l. – società unipersonale.
STEERING COMMITTEE

President
Gennaro Tampone University of Florence and the College of Engineers of Tuscany, (Italy)

Members
Paolo Del Bianco Fondazione Romualdo Del Bianco®-Life Beyond Tourism® (Italy)
Roberto Corazzi University of Florence (Italy)
Jerzy Jasienko University of Technology of Wroclaw (Poland)
Emma Mandelli University of Florence (Italy)

SCIENTIFIC COMMITTEE

Nuhad Abdallah (Syria), Ali Abughaneimeh (Jordan), Shukur Djurayevich Askarov (Uzbekistan), Ibrahim Ataç (Turkey), Abdel Aziz Salah Salem (Morocco), Carlo Blasi (Italy), Antonio Borri (Italy), Ugis Bratuskins (Latvia), Silvia Briccoli Batì (Italy), Giovannangelo Camporeale (Italy), Vito Cappellini (Italy), Stella Castiello (Italy), Mario Alberto Chiorino (Italy), Roberto Corazzi (Italy), Massimo Corradi (Italy), Giorgio Croci (Italy), Mario De Stefano (Italy), Angelo Di Tommaso (Italy), † Antonino Di Vita (Italy), Mario Doci (Italy), Nadezhda Eksareva (Ukraine), Natale Gucci (Italy), Francesco Gurreri (Italy), Amra Hadzimuhamedovic (Bosnia and Herzegovina), Nana Iashvili (Georgia), Jerzy Jasienko (Poland), Andrzej Kadmuczka (Poland), Alexander Kudryavtsev (Russia), Eva Kralova (Slovakia), Anna Lobovikov-Katz (Israel), Paulo Lourenco (Portugal), Giorgio Macchi (Italy), Varma Mahesh (India), Gulchohra Mammadova (Azerbaijan), Emma Mandelli (Italy), Claudio Menichelli (Italy), Claudio Modena (Italy), Abdurahman Mohamed (Palestine), Gabriele Morolli (Italy), Michele Paradiso (Italy), Amir Pasic (Bosnia and Herzegovina), Maurizio Piazza (Italy), Mohammed Reza Malek (Iran), Pere Roca (Spain), Paolo Rocchi (Italy), Guido Sarà (Italy), Maini Satprem (India), Ljiljana Sepic (Croatia), Maurizio Seracini (USA), Tetyana V. Sergeyeva (Ukraine), Paolo Spinelli (Italy), Gennaro Tampone (Italy), Farhad Teherani (Iran), Giacomo Tempesta (Italy), Ugo Tonietti (Italy), Athmane Touileb (Algeria), Grazia Tucci (Italy), Andrea Vignoli (Italy)

ORGANIZING COMMITTEE

President
Paolo Del Bianco Fondazione Romualdo Del Bianco®-Life Beyond Tourism® (Italy)

Members
Roberto Corazzi University of Florence (Italy)
Marc Laenen Board Member for International Relations of the Fondazione Romualdo Del Bianco®-Life Beyond Tourism® (Belgium)
Emma Mandelli University of Florence (Italy)
Gennaro Tampone University of Florence and the College of Engineers of Tuscany (Italy)
Antonello Usai College of Engineers of Tuscany (Italy)
Michaela Zackova Rossi Promo Florence Events (Italy)

ORGANIZING SECRETARIAT
Promo Florence Events
Via del Giglio 10, Florence (Italy)
Tel. +39 055 285588 domes@promoflorenceevents.org
PATRONAGES

The International Congress DOMES IN THE WORLD, organized with the High Patronage of the President of the Italian Republic, is part of the “90 Days for Intercultural Dialogue” Programme, conceived and promoted by Fondazione Romualdo Del Bianco®-Life Beyond Tourism® and included in UNESCO’s International Year for Rapprochement of Cultures Programme.
A scientific approach to the Dome of St. Peter in Rome.
The expertise of three mathematicians of the Dotti’s Roman Republic (1742)

Olimpia Niglio

Abstract In 1741 the Pope Benedict XIV commissioned to three mathematicians of the Dotti’s Roman Republic, Roger Joseph Boscovich, François Jacquier and Thomas Le Seur, an expert to determine the static nature of the St. Peter Dome. In the scientific literature there are only few references on this report. It represents an important transfer from an empirical concept to a scientific approach of the structural analysis. The report is based on an innovative principle of the New Science: the Principle of Virtual Work, published by John Bernoulli in 1725. The controversy provoked in that time among researchers by this innovative approach, still makes the analysis of this report a document of great interest for the history of engineering sciences. Starting from this basis, the present contribution aims to illustrate the cognitive process of the three mathematicians: "diagnosis-prognosis-therapy". The contribution analyzes the cultural context of that time and also describes the discussions provoked by the innovative proposal of the three mathematicians.

Keywords engineering of the structures, architectural restauration, scientific evolution.

1. INTRODUCION

The present scientific theories aimed at analysing the mechanical behaviour of buildings started to be developed in the second half of the 17th century. Only then were the mechanics of materials taking their first steps with Mariotte and Robert Hooke’s research (Timoshenko 1953; Timoshenko 1956). This followed the road which Galileo had opened indicating experimental observation as the basis of scientific knowledge. In his last work Galileo himself had presented the first observations on the "new science relating to the mechanics" of structures (Galilei 1638).

The first applications of the new scientific methods to structural problems started to be enunciated between the end of the 17th century and the early 18th century. It was then, in 1741, that Benedict XIV commissioned three mathematicians Roger Joseph Boscovich, François Jacquier and Thomas Le Seur from the "Repubblica Romana dei Dotti" (Boscovich & Al. 1742) to carry out a historical assessment. Serious concerns had arisen over the static conditions of Saint Peter’s dome, where significant cracks had appeared. Interesting studies had already been developed on the subject, accompanied by learned and heated debates. This had led to the compilation of authentic treatises, which also aimed to order

1 Olimpia Niglio, University eCampus (Como), Faculty Engineering, Civil Engineering, Professor researcher in Architectural Restoration, Visiting Professor Kyoto University (Japan). Email: olimpia.niglio@uniecampus.it
the knowledge on the subject. Historical documents also report other experts’ opinions on the state of the dome, including that of the well-known mathematician from Venice Giovanni Poleni (Poleni 1748).

The three Mathematicians’ study stood out for its important innovation. It contained an assessment based entirely, perhaps for the first time, on a scientific criterion aimed at interpreting the mechanical behaviour of an architectural building. Its historical importance lies in the fact that, unlike the previous practices, which were based on empirical rules, generally of a geometric nature (see for example Poleni’s studies on the statics of arches), theoretical conceptions, this time of a scientific nature, were used and applied to the study of a structural problem. Although not entirely correctly, the PVW (Principle of Virtual Work) was adopted in the assessment, and used as an instrument for measuring the metal rings to be applied to the drum of the dome (Capecchi 1999; Capecchi 2002). In an attempt to determine an important date, a number of experts (von Halász 1969) regard this assessment as the historical moment when the change took place from engineering based on artisan traditions, of an empirical nature, to engineering based on the application of the new scientific theories; theories, which were just starting to become established. The three Mathematicians’ assessment was presented towards the end of 1742 and printed in 1743. The study method thus introduced could truly represent the historic beginning of modern civil engineering. Unlike the previous practices, which used rules dictated by intuition and experience, a scientific process was applied to assess a building’s characteristics of resistance and state of stress. This consequently started a process, which does not yet appear complete (Di Pasquale 1996).

2. **HISTORICAL NOTES OF SAINT PETER’S DOME**

The building of “Saint Peter’s” Dome was started on 15 July 1588 under Sisto V, however, it was interrupted on 13 May 1590, just before the Pope’s death. Following Michelangelo’s project, the building work had reached the placing of the drum. It was completed by Giacomo Della Porta at the beginning of the 17th century (Ackerman 1968). The first cracks were discovered back in 1603, under Clement VIII, just after the building was finished, on completion of the mosaics on the vaults. Subsequent damage was then recorded after 1631, as we can see in Gianlorenzo Bernini’s biography written by Filippo Baldinucci. It was suspected that the statics of the dome had been compromised by the insertion of the spiral staircase by Bernini, set within the pillars, under the pontificate of Urban VIII. The controversy relating to Bernini’s work soon quietened down. Baldinucci himself observed that a number of cracks inside the dome on the cornice and on the drum had been found before Bernini. Some had attributed the damage to phenomena of settling of the great dome and to the

![Saint Peter's Dome](image_url)
different working techniques used for its construction. However, the three Mathematicians claimed in their study that the damage described by Baldinucci was not the damage found in 1742. The numerous criticisms raised against Bernini referred to evident conditions of instability which were present already in 1742. Subsequently, the instability had increased and was developing.

"Il Tempio Vaticano" by Carlo Fontana, published in 1694 (Curcio 2003) made it possible to carry out an in-depth analysis of the phases of construction of Saint Peter's Basilica and its dome, until the complex took on its present arrangement. The work covers the events of the construction of the building from the beginning, when the emperor Constantine wanted the basilica built near the tomb of the apostle Peter, until the end of the 17th century.

3. THE METHOD OF KNOWLEDGE

Details of the task assigned to the three Mathematicians can be read in the introduction of the assessment. An important point concerns the use of the words "ristauratione" (Restoration) and "conservazione" (Conservation). This shows a clear wish to orient the proposed interventions at safeguarding the existing building work: an admirable aim, promoted in a time when the philosophy of restoration was not yet clearly defined. The innovative aspect of the assessment concerns the application of the method chosen for defining the interventions. Explicit reference was not made to Galileo because the memory of the trial in 1633 was still vivid, and his writings were still banned (they were until 1822). However, the three Mathematicians were nonetheless faced with a problem of static restoration using, perhaps for the first time, a scientific criterion of calculation. They highlighted the importance of acting not only using their "own visual observations", but in particular using a "good theory based on Mechanics" for reference. The process follows a plan that can be divided into the subsequent four phases following a coherent and logical approach. The phases are:

(a) **Diagnosis**, consisting of a careful observation of the present state to determine the amount and importance of the phenomena;

(b) **Aetiology**, consisting of an assessment, realized from the previous observations, regarding the identification of the causes, which may have lead to the phenomena;

(c) **Prognosis**, consisting of an examination of the possible criteria and methodologies available, which could be used to identify and calculate the solutions to be adopted;

(d) **Therapy**, consisting of a detailed definition of the working methods to be followed for applying the identified solutions.

4. THE DIAGNOSIS

The first part of the study is dedicated to a detailed description of the dome and the creation of a detailed geometrical survey. This instrument of knowledge is subsequently perfected by superimposing the existing pattern of cracks.

The precise representation aims to lay the basis for analysing the loads and interpreting the relative movements between the various structural parts, which, according to current terminology, could be considered macro-elements. Even the variations in width of the cracks along the development of each of them are evidenced, with the clear intention of representing the kinematic mechanisms of the various relative movements (Fig.2).

The survey consequently becomes an instrument of knowledge and support for thematic close examinations including kinematical analyses of the instability. In the continuation of this part of the assessment the three Mathematicians describe the damage observed, grouping it into three main areas of observation: the drum, the vault and the lantern.
5. THE AETIOLOGY

The second part of the assessment is dedicated to identifying the causes responsible for the instability. The authors formulate a graphic diagram to show how the movements may have occurred. The cracks are interpreted as hinges around which the parts of stonework, which is not cracked, considered non-deformed, have rotated (Fig.3). The kinematical interpretation of the pattern of cracks identified enables the three Mathematicians to exclude a number of hypotheses formulated by others. In the absence of cracks, which can justify them, they exclude that the causes of the instability can be attributed to the subsiding of the foundations. In substance, they think that the weight of the small dome, the ribs and the double cap have weighed down causing the drum to move outwards. As for the iron rings and possible damage, the three Mathematicians, still with an elasticist mentality, claim that it would not be possible to know if, and to what extent the metal rings are truly effective. This is because they cannot be seen directly as they are inserted into the stonework, nor is it possible to know the tightening tensions. Moreover, the iron could have suffered thermal deformations changing its ring strengths, while some of the rings could even have broken.
6. THE PROGNOSIS

The assessment continues defining the process that the three Mathematicians intend to use to assess the quantity of actions associated with the kinematical mechanism and the tensional state of the rings whose scarce efficiency appeared to be responsible for the instability.

In terms of scientific innovation this is the topical moment of the assessment because the Three decide to apply a process of calculation based on the PVW. In fact, the instability refers to the excess weight that burdens, above all, the upper parts of the dome, pushing the drum outwards, and to the scarce ringing resistance of the lower buttresses.

At this point the three Mathematicians consider the results obtained by Philippe de la Hire and Couplet (Benvenuto 1981) concerning the behaviour of arches and vaults. They come to the conclusion that two causes are responsible for pushing the drum outwards: the weight of the small dome and the weight of the ribs including the gores of the dome. Similarly two horizontal forces create resistance: the force of the rings and that of the support made up of the base, drum and buttresses.

To assess the weights of the structures the three Mathematicians weigh a mass of travertine and one of stonework. Thanks also to the geometric data of the single parts surveyed, they succeed in proving that the total weight of the dome is equal to about 56'000 tons.

Whereas, to assess the force corresponding to the iron rings the three Mathematicians appeal to the treatise Coesione de’ corpi solidi by Pietro Ban Musschenbroek deducing that the traction resistance of the first ring corresponds to 114 t and that of the second to 95.

After observing that the variation in the length of a circular chain increases in the proportion of 2π in relation to the variation of the radius, the Three apply the PVW equalling all of the positive and negative works made by the elements in play. The positive work is produced by the weights of the macro-elements, which represent the damaged parts of the dome and small dome. The negative work is determined both by the resistance opposed by the drum in contrasting the deformations outwards, and by the resistance available in the rings on the various levels. This latter work, however, is assessed incorrectly: as the concept of potential elastic energy was not yet clear, it is calculated directly considering the resistance on breaking. After obtaining the values of the forces (thrust and resistance), the problem of balance, however, is handled strictly in terms of energy.

The process adopted by the three Mathematicians to solve the problem, despite containing a number of imperfections, is daring and modern. The Mathematicians renounce the use of processes based on the polygons of the forces, and refer to a method, the PVW, mentioned previously by René Descartes in his principal work published in 1637 (Descartes 1637) and subsequently perfected by J. Bernoulli.
In this way the three Mathematicians succeed in proving that the weight of the small dome and the dome exert a force H on the impost ring of the dome distributed as internal pressure p ($H=2\pi R \times p$), whose total value results from the following relation, obtained equalling the virtual works considered (Fig. 4):

$$H \times h = \Sigma (G \times v)$$

where G indicates the weights of the small dome and the portions of the dome, where v indicates the lowerings of their centres of gravity and where h indicates the horizontal opening of the impost.

The resistance W, which contrasts the thrust H is made up partly of the resistance exerted by the rings (hence the need to calculate the force of these exerted as radial pressure p) and partly of the horizontal resistances with which the drum and the buttresses resist overturning. The state of balance between W and H is thus calculated by the three Mathematicians applying the new principles of Mechanics. Thanks to this process they succeed in calculating a missing thrust equal in total to about three million pounds, in other words to approximately 1000 tons.

Consequently, the cause of the instability is attributed to this imbalance. The rings, which had been laid during the construction are therefore unable to contrast the pushing action of the structures. In substance, the three Mathematicians conclude observing that the upper part tends to move inwards under the action of the loads of the small dome, while the lower part tends to move outwards developing traction tensions in the rings.

In the light of the knowledge relating to the mechanics of structures, developed later on, the adopted process does not appear without imperfections. First of all, the work carried out to dilate the rings, calculated as work of extending an equivalent straight rod, is assessed considering a constant force applied from the beginning of the elastic deformations, unduly associating a size growing elastically with a static one. Moreover, no reference is made to the work of elastic deformation of the “macro-elements” according to which the kinematism of the instability was examined, nor of the anelastic deformations of the unbalanced areas. On the other hand, as we have already seen, a mechanical theory for structures had not yet been developed to the point of being able to assess these aspects correctly. Therefore, the daring choice of a process of theoretical calculation applied for interpreting mechanical phenomena remains significant.
7. **THE THERAPY**

Again in the light of the PVW, the need is confirmed to find a solution so the thrusts acting outwards are rebalanced by thrusts acting in the opposite direction to guarantee the equilibrium of the whole structure. To do this, the three Mathematicians suggest placing additional rings, considering a safety coefficient equal to two, justifying the reason and consequently showing a typical engineering approach. The possible solutions examined are divided into three groups, according to which different alternative solutions are proposed: placing iron "struts" and chains; walling up the spaces, which are currently open, to strengthen the buttresses; eliminating the structural loads where they are not needed. Of the three groups the three Mathematicians prefer the first, or rather the placing of new rings. To do this they refer to the data analysed and to the numerical results obtained again applying the PVW. This enables them to quantify the number of interventions and optimise the position of the reinforcing rings. In response to the criticism raised by various experts on the spiral staircase made in the four pillars by Bernini, which allegedly also affected the statics of the dome, on the strength of the results obtained with a scientific process, the three Mathematicians claim that it is not necessary to fill them in since the pushing action of the drum is clearly less than that of the small dome; therefore they can be preserved in the state they still are today. However, they suggest filling in a number of spaces, which support the vaults and indicate other rings to be inserted level with the drum. Lastly, the three Mathematicians claim that all of the other solutions they had heard, and which had been suggested to them, were superfluous for resolving the static problem of the dome. The six rings alone and the various careful interventions planned would have undoubtedly contributed to improving the situation. In fact, the other solutions would have given a load of approximately 950 tons in relation to a total weight of the dome of over 56,000 tons, so with rather insignificant added value.

The indicated project solution applying a scientific process made it possible to propose work that was not invasive, respectful of the Michelangelesque building and its decorations and aesthetics. The assessment generated great controversy from well-known scholars including Poleni himself, who had also been commissioned to make an analysis of the same problem (Poleni 1748; Baggio & Da Gai 2000). Boscovich’s work was later praised by C.L. Navier (Navier 1829) who recognised its originality. The reinforcement work was carried out under the supervision of Luigi Vanvitelli (Buccaro, 1988) who applied the three Mathematicians’ proposal, and Master Nicola Zagaglia was responsible for the organisation of the site (Cosatti 1743; Zander 1991). The assessment described in this memorial is illustrated in detail in the book *Dall’ingegneria empirica verso l’ingegneria della scienza* (Niglio 2007).

8. **CONCLUSIONS**

The results of the assessment were presented by Boscovich on 20 January 1743 and published in the same year. The incident involving Saint Peter’s Dome had repercussions on other situations, for example the interventions carried out on the spire of Milan Cathedral.

This marked the start of a debate on the relationship between Architecture and Mechanics, between consolidated humanistic knowledge and new science, which was destined to revolutionise the future of building practices.

It was an important and daring step for the Three Mathematicians, taken at a historical time in which no other information of equal importance emerges. It involved basing a whole expert analysis and the consequent project proposals on the use of a scientific principle of a purely theoretical nature, which was completely innovative and not yet used in other real situations.
9. REFERENCES

Rare and archival manuscripts:

Boscovich, R.G. & Al. 1742. Parere di tre Matematici sopra i danni che si sono trovati nella cupola di S. Pietro sul finire dell’Anno MDCCXLII. Dato per ordine di nostro signore Papa Benedetto XIV. Venice (printed in 1943)

Cosatti, L. 1743, Contignationes ac pontes Nicolai Zabaglia. Rome, Nicolò Paglierini

Descartes, R. 1637. Discours de la Méthode de bien conduire sa raison et chercher la vérité dans les sciences; plus la Dioptrique, les Météores et la Géométrie, qui sont des essais de cette méthode.

Galilei, G. 1638. Discorsi e dimostrazioni matematiche intorno a due nuove scienze attenenti alla meccanica et i movimenti locali.

Poleni, G. 1748. Memorie storiche della Gran Cupola del Tempio Vaticano e de’ danni di essa, e de’ ristoramenti loro divise in libri cinque alla santità di nostro signore Papa Benedetto XIV. Padua

Book:

Navier, C. L. (1829). L’application de la Mécanique a l’établissement des constructions et des machines. Paris

