Roman wall paintings: characterisation of plaster coats made of clay mud

Bugini, Roberto, Corti, Cristina, Folli, Luisa and Rampazzi, Laura (2021) Roman wall paintings: characterisation of plaster coats made of clay mud. Heritage, 4 . pp. 889-905. ISSN 2571-9408 [Article]

[img]
Preview
PDF
Heritage_2021_1.pdf

Download (7MB) | Preview

Abstract (in English)

This paper reports on the mineralogical characterisation of samples of wall paintings from various Roman sites in Lombardy (Italy), revealing recurrent types of stratigraphy. One of the stratigraphic samples analysed was found to be a particular kind of plaster: a three-coat work featuring two coats made of clay mud, found in the site of Santa Maria alla Porta (area of the Imperial Palace of Milan—first century CE). The fragments were analysed using optical microscopy on thin sections, X-ray diffraction, scanning electron microscopy with an energy-dispersive spectrometer and infrared spectroscopy, also in non-invasive external reflection mode (7500–375 cm−1). The most interesting feature found was the finish coat made of clay mud (illite, chlorite, kaolinite and fine quartz) with a few coarse clasts and linear cavities. This clay coat was the first example ever detected in Roman Lombardy and was used in combination with a thin painted coat made of clay mud with coarse clasts together with a blue pigment (Egyptian blue) and a render coat made of lime associated with lithic clasts (sand). Our findings brought to light a particular construction technique, since in the historical sources clay is only recommended for daubing on reeds and as a render coat.

Item Type: Article
Authors:
Authors
Email
Bugini, Roberto
UNSPECIFIED
Corti, Cristina
UNSPECIFIED
Folli, Luisa
UNSPECIFIED
Rampazzi, Laura
laura.rampazzi@uninsubria.it
Languages: English
Keywords: Clay mud; plaster coat; Roman plaster; wall paintings; Egyptian blue; FTIR; SEM-EDX; XRD; reflectance infrared spectroscopy; thin sections
Subjects: B. ARCHAEOLOGY > 02. Archaeological site and remains
C. ARCHITECTURE > 08. Wall paintings
F. SCIENTIFIC TECHNIQUES AND METHODOLOGIES OF CONSERVATION > 09. Archaeometry
F. SCIENTIFIC TECHNIQUES AND METHODOLOGIES OF CONSERVATION > 28. Infra red analysis
F. SCIENTIFIC TECHNIQUES AND METHODOLOGIES OF CONSERVATION > 34. Microanalysis
F. SCIENTIFIC TECHNIQUES AND METHODOLOGIES OF CONSERVATION > 35. Mineralogical analysis
P. GEOGRAPHIC AREAS > 05. Europe
Name of monument, town, site, museum: Santa Maria alla Porta (Milan, Italy)
Volume: 4
ISSN: 2571-9408
Depositing User: dr Laura Rampazzi
Date Deposited: 10 Dec 2021 22:01
Last Modified: 31 Oct 2023 12:10
References: 1. Vitruvius. On Architecture; Schofield, R., Ed.; Penguin classics; Penguin Books Limited: London, UK, 2009; ISBN 9780141931951.

2. Pliny. Natural History; Eichholz, D.E., Ed.; Loeb Classical Library; Heinemann: Cambridge, UK, 1962.

3. Laurie, A.P. Greek and Roman Methods of Painting: Some Comments on the Statements Made by Pliny and Vitruvius about Wall and Panel

Painting; Cambridge University Press: Cambridge, UK, 1910.

4. Bugini, R.; Folli, L.; Biondelli, D. Grain morphology of aggregates in Roman plasters. In Proceedings of the 14th Euroseminar on

Microscopy on Applied to Building Materials, Helsingør, Denmark, 10–14 June 2013; Danish Technological Institute: Taastrup, Denmark, 2013; pp. 25–28.

5. Bugini, R.; Folli, L. Critères pour la comparaison des enduits peints romains de la Lombardie. ArcheoSciences 2013, 37, 41–50.

6. Ergenç, D.; La Russa, M.F.; Ruffolo, S.A.; Fort, R.; Sánchez Montes, A.L. Characterization of the wall paintings in La Casa de los

Grifos of Roman city Complutum. Eur. Phys. J. Plus 2018, 133, 355. [CrossRef]

7. Mateos, L.D.; Esquivel, D.; Cosano, D.; Jiménez-Sanchidrián, C.; Ruiz, J.R. Micro-Raman analysis of mortars and wall paintings in the Roman villa of Fuente Alamo (Puente Genil, Spain) and identification of the application technique. Sens. Actuators A Phys. 2018, 281, 15–23. [CrossRef]

8. Giorgi, L.; Nevin, A.; Nodari, L.; Comelli, D.; Alberti, R.; Gironda, M.; Mosca, S.; Zendri, E.; Piccolo, M.; Izzo, F.C. In-situ technical study of modern paintings part 1: The evolution of artistic materials and painting techniques in ten paintings from 1889 to 1940 by Alessandro Milesi (1856–1945). Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2019, 219, 530–538. [CrossRef]

9. Nodari, L.; Ricciardi, P. Non-invasive identification of paint binders in illuminated manuscripts by ER-FTIR spectroscopy: A systematic study of the influence of different pigments on the binders’ characteristic spectral features. Herit. Sci. 2019, 7, 7. [CrossRef]

10. La Nasa, J.; Moretti, P.; Maniccia, E.; Pizzimenti, S.; Colombini, M.P.; Miliani, C.; Modugno, F.; Carnazza, P.; De Luca, D. Discovering Giuseppe Capogrossi: Study of the Painting Materials in Three Works of Art Stored at Galleria Nazionale (Rome). Heritage 2020, 3, 52. [CrossRef]

11. Pronti, L.; Romani, M.; Viviani, G.; Stani, C.; Gioia, P.; Cestelli-Guidi, M. Advanced methods for the analysis of Roman wall paintings: Elemental and molecular detection by means of synchrotron FT-IR and SEM micro-imaging spectroscopy. Rend. Lincei Sci. Fis. Nat. 2020, 31, 485–493. [CrossRef]

12. Sbroscia, M.; Cestelli-Guidi, M.; Colao, F.; Falzone, S.; Gioia, C.; Gioia, P.; Marconi, C.; Mirabile Gattia, D.; Loreti, E.M.; Marinelli, M.; et al. Multi-analytical non-destructive investigation of pictorial apparatuses of “Villa della Piscina” in Rome. Microchem. J. 2020, 153, 104450. [CrossRef]

13. Cortea, I.M.; Ghervase, L.; T, entea, O.; Pârău, A.C.; Rădvan, R. First Analytical Study on Second-Century Wall Paintings from Ulpia Traiana Sarmizegetusa: Insights on the Materials and Painting Technique. Int. J. Archit. Herit. 2020, 14, 751–761. [CrossRef]

14. Bugini, R.; Corti, C.; Folli, L.; Rampazzi, L. Unveiling the Use of Creta in Roman Plasters: Analysis of Clay Wall Paintings From

Brixia (Italy). Archaeometry 2017, 59, 84–95. [CrossRef]

15. Germinario, C.; Francesco, I.; Mercurio, M.; Langella, A.; Sali, D.; Kakoulli, I.; De Bonis, A.; Grifa, C. Multi-analytical and

non-invasive characterization of the polychromy of wall paintings at the Domus of Octavius Quartio in Pompeii. Eur. Phys. J. Plus 2018, 133, 359. [CrossRef]

16. Biron, C.; Mounier, A.; Arantegui, J.P.; Bourdon, G.L.; Servant, L.; Chapoulie, R.; Roldán, C.; Almazán, D.; Díez-de-Pinos, N.; Daniel, F. Colours of the «images of the floating world». Non-invasive analyses of Japanese ukiyo-e woodblock prints (18th and 19th centuries) and new contributions to the insight of oriental materials. Microchem. J. 2020, 152, 104374. [CrossRef]

17. Daveri, A.; Malagodi, M.; Vagnini, M. The Bone Black Pigment Identification by Noninvasive, In Situ Infrared Reflection Spectroscopy. J. Anal. Methods Chem. 2018, 2018, 6595643. [CrossRef]

18. Izzo, F.; Germinario, C.; Grifa, C.; Langella, A.; Mercurio, M. External reflectance FTIR dataset (4000–400 cm−1) for the identification of relevant mineralogical phases forming Cultural Heritage materials. Infrared Phys. Technol. 2020, 106, 103266.

[CrossRef]

19. Zuena, M.; Buemi, L.P.; Stringari, L.; Legnaioli, S.; Lorenzetti, G.; Palleschi, V.; Nodari, L.; Tomasin, P. An integrated diagnostic approach to Max Ernst’s painting materials in his Attirement of the Bride. J. Cult. Herit. 2020, 43, 329–337. [CrossRef]

20. Rosi, F.; Miliani, C.; Delaney, J.; Dooley, K.; Stringari, L.; Subelyte, G.; Buemi, L.P. CHAPTER 1. Jackson Pollock’s Drip Paintings: Tracing the Introduction of Alkyds Through Non-invasive Analysis of Mid-1940s Paintings. In Science and Art; The Royal Society of Chemistry: London, UK, 2020; pp. 1–18. ISBN 9781788016384.

21. Ranalli, G.; Zanardini, E.; Andreotti, A.; Colombini, M.P.; Corti, C.; Bosch-Roig, P.; De Nuntiis, P.; Lustrato, G.; Mandrioli, P.; Rampazzi, L.; et al. Hi-tech restoration by two-steps biocleaning process of Triumph of Death fresco at the Camposanto Monumental Cemetery (Pisa, Italy). J. Appl. Microbiol. 2018, 125, 800–812. [CrossRef]

22. Goldstein, J.I.; Newbury, D.E.; Michael, J.R.; Ritchie, N.W.M.; Scott, J.H.J.; Joy, D.C. Scanning Electron Microscopy and X-ray Microanalysis; Springer: New York, NY, USA, 2017; ISBN 9781493966769.

23. Thorez, J. Phyllosilicates and Clay Minerals: A Laboratory Handbook for Their X-ray Diffraction Analysis; Lelotte: Dison, Belgium, 1975.

24. Moore, D.M.; Reynolds, R.C., Jr. X-ray Diffraction and the Identification and Analysis of Clay Minerals; Oxford University Press: Oxford, UK, 1997; ISBN 9780195087130.

25. Farmer, V.C. The Infrared Spectra of Minerals; Mineralogical Society monograph; Mineralogical Society: London, UK, 1974; ISBN

9780903056052.

26. Wilson, M.J. Clay Mineralogy: Spectroscopic and Chemical Determinative Methods; Wilson, M.J., Ed.; Chapman & Hall: London, UK, 1994; ISBN 9780412533808.

27. Mirti, P.; Appolonia, L.; Casoli, A.; Ferrari, R.P.; Laurenti, E.; Amisano Canesi, A.; Chiari, G. Spectrochemical and structural studies on a roman sample of Egyptian blue. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 1995, 51, 437–446. [CrossRef]

28. Rampazzi, L.; Andreotti, A.; Bressan, M.; Colombini, M.P.; Corti, C.; Cuzman, O.; D’Alessandro, N.; Liberatore, L.; Palombi, L.; Raimondi, V.; et al. An interdisciplinary approach to a knowledge-based restoration: The dark alteration on Matera Cathedral (Italy). Appl. Surf. Sci. 2018, 458, 529–539. [CrossRef]

29. Ranalli, G.; Zanardini, E.; Rampazzi, L.; Corti, C.; Andreotti, A.; Colombini, M.P.; Bosch-Roig, P.; Lustrato, G.; Giantomassi, C.; Zari, D.; et al. Onsite advanced biocleaning system for historical wall paintings using new agar-gauze bacteria gel. J. Appl. Microbiol. 2019, 126, 1785–1796. [CrossRef]

30. Brunello, V.; Corti, C.; Sansonetti, A.; Tedeschi, C.; Rampazzi, L. Non-invasive FTIR study of mortar model samples: Comparison among innovative and traditional techniques. Eur. Phys. J. Plus 2019, 134, 270. [CrossRef]

31. Arrizabalaga, I.; Gomez-Laserna, O.; Carrero, J.A.; Bustamante, J.; Rodriguez, A.; Arana, G.; Madariaga, J.M.; Antonio Carrero, J.; Bustamante, J.; Rodriguez, A.; et al. Diffuse reflectance FTIR database for the interpretation of the spectra obtained with a handheld device on built heritage materials. Anal. Methods 2015, 7, 1061–1070. [CrossRef]

32. Bruni, S.; Cariati, F.; Casadio, F.; Toniolo, L. Spectrochemical characterization by micro-FTIR spectroscopy of blue pigments in different polychrome works of art. Vib. Spectrosc. 1999, 20, 15–25. [CrossRef]

33. Ramjoue, E. Quelques particularites techniques des fresques romaines de Vandoeuvres dans le Canton de Geneve. In Roman Wall Painting; Béarat, H., Ed.; Fribourg University, Institute of Mineralogy and Petrography: Fribourg, Switzerland, 1997; pp. 167–179.

34. Carta Geologica d’Italia (CARG) 1:50.000—Foglio Milano n. 118, Servizio Geologico d’Italia (Piacenza, Italia). Available online:

https://www.isprambiente.gov.it/Media/carg/lombardia.html (accessed on 28 April 2021).

35. Gettens, R.J.; Stout, G.L. Painting Materials: A Short Encyclopaedia; Dover Publications: New York, NY, USA, 1966; ISBN 0486215970.

36. Riederer, J. Egyptian blue. In Artists’ Pigments. A Handbook of Their History and Characteristics—Vol. 3; West FitzHugh, E., Ed.; National Gallery of Art, Washington and Oxford University Press: Oxford, UK, 1997; pp. 23–45. ISBN 9782970013204.

37. Edreira, M.C.; Feliu, M.J.; Fernández-Lorenzo, C.; Martín, J. Spectroscopic Study of Egyptian Blue Mixed with Other Pigments. Helv. Chim. Acta 2003, 86, 29–49. [CrossRef]

38. Alberghina, M.F.; Germinario, C.; Bartolozzi, G.; Bracci, S.; Grifa, C.; Izzo, F.; La Russa, M.F.; Magrini, D.; Massa, E.; Mercurio, M.;et al. Non-invasive characterization of the pigment’s palette used on the painted tomb slabs at Paestum archaeological site. IOP Conf. Ser. Mater. Sci. Eng. 2020, 949, 012002. [CrossRef]
URI: https://openarchive.icomos.org/id/eprint/2532

Actions (login required)

View Item View Item

Metadata

Downloads

Downloads per month over past year

View more statistics

© ICOMOS
https://www.icomos.org/en
documentation(at)icomos.org