Understanding the Microstructure of Mortars for Cultural Heritage Using X-ray CT and MIP

Brunello, Valentina, Canevali, Carmen, Corti, Cristina, De Kock, Tim, Rampazzi, Laura, Recchia, Sandro, Sansonetti, Antonio, Tedeschi, Cristina and Cnudde, Veerle (2021) Understanding the Microstructure of Mortars for Cultural Heritage Using X-ray CT and MIP. Materials, 14 . pp. 5939-5958. ISSN 1996-1944 [Article]

[img]
Preview
PDF
Materials_2021.pdf

Download (6MB) | Preview

Abstract (in English)

In this study, the microstructure of mock-up mortar specimens for a historic environment, composed of different mixtures, was studied using mercury intrusion porosity (MIP) and microcom- puted tomography (μCT), highlighting the advantages and drawbacks of both techniques. Porosity, sphericity, and pores size distribution were studied, evaluating changes according to mortar compo- sition (aerial and hydraulic binders, quartz sand, and crushed limestone aggregate). The μCT results were rendered using 3D visualization software, which provides complementary information for the interpretation of the data obtained using 3D data-analysis software. Moreover, μCT contributes to the interpretation of MIP results of mortars. On the other hand, MIP showed significant ink-bottle effects in lime and cement mortars samples that should be taken into account when interpreting the results. Moreover, the MIP results highlighted how gypsum mortar samples display a poros- ity distribution that is best studied using this technique. This multi-analytical approach provides important insights into the interpretation of the porosimetric data obtained. This is crucial in the characterization of mortars and provides key information for the study of building materials and cultural heritage conservation.

Item Type: Article
Authors:
Authors
Email
Brunello, Valentina
UNSPECIFIED
Canevali, Carmen
UNSPECIFIED
Corti, Cristina
UNSPECIFIED
De Kock, Tim
UNSPECIFIED
Rampazzi, Laura
laura.rampazzi@uninsubria.it
Recchia, Sandro
UNSPECIFIED
Sansonetti, Antonio
UNSPECIFIED
Tedeschi, Cristina
UNSPECIFIED
Cnudde, Veerle
UNSPECIFIED
Languages: English
Keywords: cement; stone conservation; 3D visualization; μCT; MIP; mortar
Subjects: C.ARCHITECTURE > 04. Building materials
F.SCIENTIFIC TECHNIQUES AND METHODOLOGIES OF CONSERVATION > 52. Structural surveys
F.SCIENTIFIC TECHNIQUES AND METHODOLOGIES OF CONSERVATION > 60. X-Ray analysis
Volume: 14
ISSN: 1996-1944
Depositing User: dr Laura Rampazzi
Date Deposited: 10 Dec 2021 22:05
Last Modified: 10 Dec 2021 22:05
References: 1. Miriello, D.; Crisci, G.M. Image analysis and flatbed scanners. A visual procedure in order to study the macro-porosity of the archaeological and historical mortars. J. Cult. Herit. 2006, 7, 186–192. [CrossRef]

2. Marinoni, N.; Pavese, A.; Foi, M.; Trombino, L. Characterisation of mortar morphology in thin sections by digital image processing. Cem. Concr. Res. 2005, 35, 1613–1619. [CrossRef]

3. Mora, C.F.; Kwan, A.K.H. Sphericity, shape factor, and convexity measurement of coarse aggregate for concrete using digital image processing. Cem. Concr. Res. 2000, 30, 351–358. [CrossRef]

4. Kwan, A.K.; Mora, C.; Chan, H. Particle shape analysis of coarse aggregate using digital image processing. Cem. Concr. Res. 1999, 29, 1403–1410. [CrossRef]

5. Taylor, H.F.W. Cement Chemistry, 2nd ed.; Thomas Telford Publishing, Thomas Telford Services Ltd.: London, UK, 1997; Volume 20, 459p.

6. Hemes, S.; Desbois, G.; Urai, J.L.; Schröppel, B.; Schwarz, J.-O. Multi-scale characterization of porosity in Boom Clay (HADES- level, Mol, Belgium) using a combination of X-ray μ-CT, 2D BIB-SEM and FIB-SEM tomography. Microporous Mesoporous Mater.

2015, 208, 1–20. [CrossRef]

7. Mosquera, M.J.; Silva, B.; Prieto, B.; Ruiz-Herrera, E. Addition of cement to lime-based mortars: Effect on pore structure and vapor transport. Cem. Concr. Res. 2006, 36, 1635–1642. [CrossRef]

8. Anovitz, L.M.; Cole, D.R. Characterization and Analysis of Porosity and Pore Structures. Rev. Mineral. Geochem. 2015, 80, 61–164.

9. Arandigoyen, M.; Alvarez, J.I. Pore structure and mechanical properties of cement–lime mortars. Cem. Concr. Res. 2007, 37,

767–775. [CrossRef]

10. Andriani, G.F.; Walsh, N. Physical properties and textural parameters of calcarenitic rocks: Qualitative and quantitative evaluations. Eng. Geol. 2002, 67, 5–15. [CrossRef]

11. Korat, L.; Ducman, V.; Legat, A.; Mirticˇ, B. Characterisation of the pore-forming process in lightweight aggregate based on silica sludge by means of X-ray micro-tomography (micro-CT) and mercury intrusion porosimetry (MIP). Ceram. Int. 2013, 39, 6997–7005. [CrossRef]

12. Cnudde, V.; Cwirzen, A.; Masschaele, B.; Jacobs, P.J.S. Porosity and microstructure characterization of building stones and concretes. Eng. Geol. 2009, 103, 76–83. [CrossRef]

13. Beaudoin, J.J. Porosity measurement of some hydrated cementitious systems by high pressure mercury intrusion-microstructural limitations. Cem. Concr. Res. 1979, 9, 771–781. [CrossRef]

14. Cheng-yi, H.; Feldman, R.F. Influence of silica fume on the microstructural development in cement mortars. Cem. Concr. Res.

1985, 15, 285–294. [CrossRef]

15. Shi, D.; Winslow, D.N. Contact angle and damage during mercury intrusion into cement paste. Cem. Concr. Res. 1985, 15, 645–654.

16. Olson, R.A.; Neubauer, C.M.; Jennings, H.M. Damage to the Pore Structure of Hardened Portland Cement Paste by Mercury Intrusion. J. Am. Ceram. Soc. 2005, 80, 2454–2458. [CrossRef]

17. Odler, I.; Köster, H. Investigations on the structure of fully hydrated Portland cement and tricalcium silicate pastes. II. Total porosity and pore size distribution. Cem. Concr. Res. 1986, 16, 893–901. [CrossRef]

Materials 2021, 14, 5939 17 of 19

18. Lange, D.A.; Jennings, H.M.; Shah, S.P. Image analysis techniques for characterization of pore structure of cement-based materials. Cem. Concr. Res. 1994, 24, 841–853. [CrossRef]

19. Cook, R.A.; Hover, K.C. Mercury porosimetry of hardened cement pastes. Cem. Concr. Res. 1999, 29, 933–943. [CrossRef]

20. Arandigoyen, M.; Alvarez, J.I. Blended pastes of cement and lime: Pore structure and capillary porosity. Appl. Surf. Sci. 2006, 252, 8077–8085. [CrossRef]

21. Münch, B.; Holzer, L. Contradicting geometrical concepts in pore size analysis attained with electron microscopy and mercury intrusion. J. Am. Ceram. Soc. 2008, 91, 4059–4067. [CrossRef]

22. Johannesson, B.; Utgenannt, P. Microstructural changes caused by carbonation of cement mortar. Cem. Concr. Res. 2001, 31, 925–931. [CrossRef]

23. Klobes, P.; Riesemeier, H.; Meyer, K.; Goebbels, J.; Hellmuth, K.-H. Rock porosity determination by combination of X-ray computerized tomography with mercury porosimetry. Fresenius’ J. Anal. Chem. 1997, 357, 543–547. [CrossRef]

24. Lu, S.; Landis, E.N.; Keane, D.T. X-ray microtomographic studies of pore structure and permeability in Portland cement concrete. Mater. Struct. 2007, 39, 611–620. [CrossRef]

25. Wan, K.; Xu, Q. Local porosity distribution of cement paste characterized by X-ray micro-tomography. Sci. China Technol. Sci. 2014, 57, 953–961. [CrossRef]

26. du Plessis, A.; Olawuyi, B.J.; Boshoff, W.P.; le Roux, S.G. Simple and fast porosity analysis of concrete using X-ray computed tomography. Mater. Struct. 2016, 49, 553–562. [CrossRef]

27. Lanzón, M.; Cnudde, V.; de Kock, T.; Dewanckele, J. X-ray microtomography (μ-CT) to evaluate microstructure of mortars containing low density additions. Cem. Concr. Compos. 2012, 34, 993–1000. [CrossRef]

28. Cnudde, V.; Dewanckele, J.; Boone, M.; de Kock, T.; Boone, M.; Brabant, L.; Dusar, M.; de Ceukelaire, M.; de Clercq, H.; Hayen, R.; et al. High-resolution X-ray CT for 3D petrography of ferruginous sandstone for an investigation of building stone decay. Microsc. Res. Tech. 2011, 74, 1006–1017. [CrossRef]

29. Lanzón, M.; Cnudde, V.; de Kock, T.; Dewanckele, J.; Piñero, A. X-ray tomography and chemical-physical study of a calcarenite extracted from a Roman quarry in Cartagena (Spain). Eng. Geol. 2014, 171, 21–30. [CrossRef]

30. Peng, S.; Hu, Q.; Dultz, S.; Zhang, M. Using X-ray computed tomography in pore structure characterization for a Berea sandstone:

Resolution effect. J. Hydrol. 2012, 472, 254–261. [CrossRef]

31. Brabant, L.; Vlassenbroeck, J.; de Witte, Y.; Cnudde, V.; Boone, M.N.; Dewanckele, J.; Van Hoorebeke, L. Three-Dimensional Analysis of High-Resolution X-Ray Computed Tomography Data with Morpho+. Microsc. Microanal. 2011, 17, 252–263. [CrossRef]

32. Pauli, J.; Scheying, G.; Mügge, C.; Zschunke, A.; Lorenz, P. Determination of the pore widths of highly porous materials with NMR microscopy. Fresenius’ J. Anal. Chem. 1997, 357, 508–513. [CrossRef]

33. Brai, M.; Casieri, C.; De Luca, F.; Fantazzini, P.; Gombia, M.; Terenzi, C. Validity of NMR pore-size analysis of cultural heritage

ancient building materials containing magnetic impurities. Solid State Nucl. Magn. Reson. 2007, 32, 129–135. [CrossRef] [PubMed]

34. Muller, A.C.A.; Scrivener, K.L. A reassessment of mercury intrusion porosimetry by comparison with 1H NMR relaxometry. Cem. Concr. Res. 2017, 100, 350–360. [CrossRef]

35. Zuena, M.; Tomasin, P.; Alberghina, M.F.; Longo, A.; Marrale, M.; Gallo, S.; Zendri, E. Comparison between mercury intrusion porosimetry and nuclear magnetic resonance relaxometry to study the pore size distribution of limestones treated with a new consolidation product. Measurement 2019, 143, 234–245. [CrossRef]

36. Coppola, R.; Lapp, A.; Magnani, M.; Valli, M. Non-destructive investigation of microporosity in marbles by means of small angle

neutron scattering. Constr. Build. Mater. 2002, 16, 223–227. [CrossRef]

37. Thomson, M. 2.5 Porosity of mortars. In Characterisation of Old Mortars with Respect to their Repair—Final Report of RILEM TC 167–COM; Groot, C., Ashall, G., Hughes, J., Eds.; RILEM Publications SARL: Bagneux, France, 2004; pp. 77–106.

38. Papayianni, I.; Stefanidou, M. Strength-porosity relationships in lime-pozzolan mortars. Constr. Build. Mater. 2006, 20, 700–705.

39. Gulotta, D.; Goidanich, S.; Tedeschi, C.; Nijland, T.G.; Toniolo, L. Commercial NHL-containing mortars for the preservation of historical architecture. Part 1: Compositional and mechanical characterisation. Constr. Build. Mater. 2013, 38, 31–42. [CrossRef]

40. Stefanidou, M. Methods for porosity measurement in lime-based mortars. Constr. Build. Mater. 2010, 24, 2572–2578. [CrossRef]

41. Tedeschi, C.; Garavaglia, E. A probabilistic approach to investigate the physical compatibility between bedding and re-pointing

mortars. In Proceedings of the International Conference on Sustainable Materials, Systems and Structures (SMSS2019) Durability, Monitoring and Repair of Structures (PRO 128), Rovinj, Croatia, 18–22 March 2019; Baricˇevic ́, A., Rukavina, M.J., Damjanovic ́, D., Guadagnini, M., Eds.; RILEM Publications SARL: Rovinj, Croatia, 2019; pp. 700–707.

42. Moro, F.; Böhni, H. Ink-Bottle Effect in Mercury Intrusion Porosimetry of Cement-Based Materials. J. Colloid Interface Sci. 2002, 246, 135–149. [CrossRef]

43. Abell, A.B.; Willis, K.L.; Lange, D.A. Mercury intrusion porosimetry and image analysis of cement-based materials. J. Colloid Interface Sci. 1999, 211, 39–44. [CrossRef]

44. Diamond, S. A critical comparison of mercury porosimetry and capillary condensation pore size distributions of Portland cement pastes. Cem. Concr. Res. 1971, 1, 531–545. [CrossRef]

45. Diamond, S. Mercury porosimetry: An inappropriate method for the measurement of pore size distributions in cement-based materials. Cem. Concr. Res. 2000, 30, 1517–1525. [CrossRef]

46. Tariq, F.; Haswell, R.; Lee, P.D.; McComb, D.W. Characterization of hierarchical pore structures in ceramics using multiscale tomography. Acta Mater. 2011, 59, 2109–2120. [CrossRef]

47. Winslow, D.; Diamond, S. A mercury porosimetry study of the evolution of porosity in Portland cement. J. Mater. 1970, 5, 564–585. [CrossRef]

48. Diamond, S.; Bonen, D. Microstructure of Hardened Cement Paste—A New Interpretation. J. Am. Ceram. Soc. 1993, 76, 2993–2999. [CrossRef]

49. Diamond, S. Aspects of concrete porosity revisited. Cem. Concr. Res. 1999, 29, 1181–1188. [CrossRef]

50. Maire, E. X-Ray Tomography Applied to the Characterization of Highly Porous Materials. Annu. Rev. Mater. Res. 2012, 42, 163–178. [CrossRef]

51. Cnudde, V.; Jacobs, P. Preliminary results of X-ray micro-tomography applied in conservation and restoration of natural building stones. In Proceedings of the X-ray CT for Geomaterials: Soils, Concrete, Rocks, Kumamoto, Japan, 6–7 November 2003; Otani, J., Obara, Y., Eds.; AA Balkema Publishers: Lisse, The Netherlands, 2004; pp. 363–371.

52. du Plessis, A.; Boshoff, W.P. A review of X-ray computed tomography of concrete and asphalt construction materials. Constr. Build. Mater. 2019, 199, 637–651. [CrossRef]

53. Du Plessis, A.; Yadroitsev, I.; Yadroitsava, I.; Le Roux, S.G. X-Ray Microcomputed Tomography in Additive Manufacturing: A Review of the Current Technology and Applications. 3D Print. Addit. Manuf. 2018, 5, 227–247. [CrossRef]

54. Tedeschi, C.; Binda, L.; Garavaglia, E. Probabilistic Evaluation of the Durability of Ready Mix Mortars on the Maintenance of Historic Masonry. In Proceedings of the 12th International Conference on Durability of Building Materials and Components XII

DBMC, Porto, Portugal, 12–15 April 2011; Peixoto de Freitas, V., Corvacho, H., Lacasse, M., Eds.; FEUP Ediçoes: Porto, Portugal,

2011; pp. 1–9.

55. Gulotta, D.; Goidanich, S.; Tedeschi, C.; Toniolo, L. Commercial NHL-containing mortars for the preservation of historical

architecture. Part 2: Durability to salt decay. Constr. Build. Mater. 2015, 96, 198–208. [CrossRef]

56. Stefanigou, M. Microstructure aspects related to durable lime mortars. In Proceedings of the International Conference on Sustainable Materials, Systems and Structures (SMSS2019) Durability, Monitoring and Repair of Structures (PRO 128), Rovinj,

Croatia, 18–22 March 2019; Baricˇevic ́, A., Rukavina, M.J., Damjanovic ́, D., Guadagnini, M., Eds.; RILEM Publications, SARL:

Rovinj, Croatia, 2019; pp. 637–643.

57. Igea Romera, J.; Martínez-Ramírez, S.; Lapuente, P.; Blanco-Varela, M.T. Assessment of the physico-mechanical behaviour of

gypsum-lime repair mortars as a function of curing time. Environ. Earth Sci. 2013, 70, 1605–1618. [CrossRef]

58. Cnudde, V.; Boone, M.N. High-resolution X-ray computed tomography in geosciences: A review of the current technology and applications. Earth-Sci. Rev. 2013, 123, 1–17. [CrossRef]

59. Brunello, V.; Corti, C.; Sansonetti, A.; Tedeschi, C.; Rampazzi, L. Non-invasive FTIR study of mortar model samples: Comparison among innovative and traditional techniques. Eur. Phys. J. Plus 2019, 134, 270. [CrossRef]

60. Brunello, V. Mortars: A complex material in cultural heritage A multi-analytical procedure to characterize historical mortars. Ph.D. Thesis, Università dell’Insubria, Varese, Italia, 2020.

61. Ente Italiano di Normazione UNI EN 459-1:2015 Building Lime—Part 1: Definitions, Specifications and Conformity Criteria. 2015. Available online: https://standards.iteh.ai/catalog/standards/cen/588081bb-ff4e-4421-997c-2d7dcab1b6ac/en-459-1-2015 (accessed on 29 August 2021).

62. EN 1015-11: 1999—Methods of Test for Mortar for Masonry. 1999. Available online: https://standards.iteh.ai/catalog/standards/

cen/7a575e90-4735-4c98-8034-9ec96633f0d2/en-1015-11-1999 (accessed on 29 August 2021).

63. EN 196—Methods of Testing Cement—Part I. 2005, Volume 1. Available online: https://standards.iteh.ai/catalog/standards/

cen/37b8816e-4085-4dcc-a642-a383d9bddd6c/en-196-1-2016 (accessed on 29 August 2021).

64. Masschaele, B.; Dierick, M.; van Loo, D.; Boone, M.N.; Brabant, L.; Pauwels, E.; Cnudde, V.; van Hoorebeke, L. HECTOR: A 240kV micro-CT setup optimized for research. J. Phys. Conf. Ser. 2013, 463, 012012. [CrossRef]

65. Vlassenbroeck, J.; Dierick, M.; Masschaele, B.; Cnudde, V.; Van Hoorebeke, L.; Jacobs, P. Software tools for quantification of X-ray microtomography at the UGCT. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2007, 580, 442–445. [CrossRef]

66. Software manual of “Inside Matters Octopus Analysis 1.1.1.3” 2015, 32.

67. Brunello, V.; Bersani, D.; Rampazzi, L.; Sansonetti, A.; Tedeschi, C. Gypsum based mixes for conservation purposes: Evaluation of

microstructural and mechanical features. Mater. Construcción 2020, 70, 207. [CrossRef]

68. Jroundi, F.; Gonzalez-Muñoz, M.T.; Garcia-Bueno, A.; Rodriguez-Navarro, C. Consolidation of archaeological gypsum plaster by bacterial biomineralization of calcium carbonate. Acta Biomater. 2014, 10, 3844–3854. [CrossRef]

69. Papayianni, I.; Stefanidou, M. The Evolution of Porosity in Lime Based Mortars. In Proceedings of the 8th Euroseminar on Microscopy Applied to Building Materials, Athens, Greece, 4–7 September 2001.

70. Hayen, R.; Van Balen, K.; Van Gemert, D. The Influence Of Production Processes And Mortar Compositions On The Properties Of Historical Mortars. In Proceedings of the 9th Canadian Masonry Symposium, Fredericton, NB, Canada, June 2001. Available online: http://canadamasonrydesigncentre.com/download/9th_symposium/MORTAR06.pdf (accessed on 29 August 2021).

71. Schäfer, J.; Hilsdorf, H.K. Ancient and New Lime Mortars—The correlation between their composition, structure and properties. In Conservation of Stone and Other Materials, Proceedings of the International RILEM/UNESCO Congress Held at the UNESCO Headquarters, Paris, France, 29 June–1 July 1992; E. & F.N. Spon: New York, NY, USA, 1993; Volume 2, pp. 605–612.

72. Zhu, J.; Zhang, R.; Zhang, Y.; He, F. The fractal characteristics of pore size distribution in cement-based materials and its effect on gas permeability. Sci. Rep. 2019, 9, 1–12. [CrossRef]

73. Freire, T.; Veiga, M.R.; Silva, A.S.; Brito, J. Improving the Durability of Portuguese Historical Gypsum Plasters Using Compatible Restoration Products. In Proceedings of the 12th International Conference on Durability of Building Materials and Components XII DBMC, Porto, Portugal, 12–15 April 2011; Peixoto de Freitas, V., Corvacho, H., Lacasse, M., Eds.; FEUP Ediçoes: Porto, Portugal, 2011; pp. 905–913.
URI: https://openarchive.icomos.org/id/eprint/2534

Actions (login required)

View Item View Item

Metadata

Downloads

Downloads per month over past year

View more statistics

© ICOMOS
https://www.icomos.org/en
documentation(at)icomos.org