An interdisciplinary approach to a knowledge-based restoration: the dark alteration on Matera Cathedral (Italy)

Rampazzi, Laura, Andreotti, Alessia, Bressan, Mario, Colombini, Maria Perla, Corti, Cristina, Cuzman, Oana, D'Alessandro, Nicola, Liberatore, Lolita, Palombi, Lorenzo, Raimondi, Valentina, Sacchi, Barbara, Tiano, Piero, Tonucci, Lucia, Vettori, Silvia, Zanardini, Elisabetta and Ranalli, Giancarlo (2018) An interdisciplinary approach to a knowledge-based restoration: the dark alteration on Matera Cathedral (Italy). Applied Surface Science, 458 (2018). pp. 529-539. ISSN 0169-4332 [Article]

An interdisciplinary approach to a knowledge-based restoration.pdf

Download (1MB) | Preview

Abstract (in English)

An interdisciplinary analytical campaign was carried out on the exterior walls of the Santa Maria della Bruna and Sant’Eustachio Cathedral in Matera. Large areas of these walls have become darkened and the main objective was to evaluate the state of conservation of the stone material (a very porous, organogenic limestone called “Pietra di Matera”), and to suggest the best strategy for the current restoration. Several techniques were used in situ and ex situ-in laboratory analyses: X-ray diffraction, infrared spectroscopy, ion chromatography, pyrolysis/gas chromatography coupled with mass spectrometry, colour change measurements, laser-induced fluorescence together with biological techniques. Ex-situ and in situ cleaning tests were also carried out on the stone surface. The results showed the presence of chlorophyll and bacteria on the surface, together with sulfation and calcium oxalate films as the main decay phenomena. In addition, the determination of saccharide and egg residues suggest both biological activity and past conservative treatments as the cause of oxalate films. Data obtained from the analyses proved to be very useful for the conservation work; a complex plan of restoration was adopted, including both traditional and innovative techniques (such as biocleaning, bacterial-gel and a laser system) together with a final evaluation of several protective methods

Item Type: Article
Rampazzi, Laura
Andreotti, Alessia
Bressan, Mario
Colombini, Maria Perla
Corti, Cristina
Cuzman, Oana
D'Alessandro, Nicola
Liberatore, Lolita
Palombi, Lorenzo
Raimondi, Valentina
Sacchi, Barbara
Tiano, Piero
Tonucci, Lucia
Vettori, Silvia
Zanardini, Elisabetta
Ranalli, Giancarlo
Languages: English
Keywords: Dark alteration; FT-IR; LIF; Py-GC-MS; calcium oxalate film; biocleaning; religious heritage; christian heritage; cathedrals; interdisciplinarity; Restoration techniques; Italy; cleaning; world heritage; world heritage sites
Subjects: C.ARCHITECTURE > 04. Building materials
C.ARCHITECTURE > 05. Building techniques
G.DETERIORATION > 02. Causes of deterioration
H.HERITAGE TYPOLOGIES > 13. Historic town centres
Name of monument, town, site, museum: Santa Maria della Bruna and Sant’Eustachio Cathedral (Matera, Italy)
UNESCO WHC Number: 670
Volume: 458
Number: 2018
ISSN: 0169-4332
Depositing User: dr Laura Rampazzi
Date Deposited: 02 Mar 2021 11:20
Last Modified: 02 Mar 2021 11:20
References: [1] AA.VV., Science and Art: A Future for Stone, in: J. Hughes, T. Howind (Eds.), Proc. 13th Int. Congr. Deterior. Conserv. Stone, University of the West of Scotland, Paisley, 2016: p. 684.

[2] C. Genestar, C. Pons, J.C. Cerro, V. Cerdà, Different decay patterns observed in a nineteenth-century building (Palma, Spain), Environ. Sci. Pollut. Res. 21 (2014) 8663–8672. doi:10.1007/s11356-014-2761-7.

[3] T. Rosado, A. Reis, J. Mirão, A. Candeias, P. Vandenabeele, A.T. Caldeira, Pink! Why not? On the unusual colour of Évora Cathedral, Int. Biodeterior. Biodegradation. 94 (2014) 121–127. doi:10.1016/j.ibiod.2014.07.010.

[4] D. Pinna, M. Galeotti, A. Rizzo, Brownish alterations on the marble statues in the church of Orsanmichele in Florence: what is their origin?, Herit. Sci. 3 (2015) 7. doi:10.1186/s40494-015-0038-1.

[5] M. Lettieri, M. Masieri, Surface characterization and effectiveness evaluation of anti-graffiti coatings on highly porous stone materials, Appl. Surf. Sci. 288 (2014) 466–477. doi:10.1016/j.apsusc.2013.10.056.

[6] V. Crupi, G. Galli, M.F. La Russa, F. Longo, G. Maisano, D. Majolino, M. Malagodi, A. Pezzino, M. Ricca, B. Rossi, S.A. Ruffolo, V. Venuti, Multi-technique investigation of Roman decorated plasters from Villa dei Quintili (Rome, Italy), Appl. Surf. Sci. 349 (2015) 924–930. doi:10.1016/j.apsusc.2015.05.074.

[7] R.-M. Ion, D. Turcanu-Caruţiu, R.-C. Fierăscu, I. Fierăscu, I.-R. Bunghez, M.-L. Ion, S. Teodorescu, G. Vasilievici, V. Rădiţoiu, Caoxite-hydroxyapatite composition as consolidating material for the chalk stone from Basarabi–Murfatlar churches ensemble, Appl. Surf. Sci. 358 (2015) 612–618. doi:10.1016/j.apsusc.2015.08.196.

[8] M. Ricca, C.M. Belfiore, S.A. Ruffolo, D. Barca, M.A. De Buergo, G.M. Crisci, M.F. La Russa, Multi-analytical approach applied to the provenance study of marbles used as covering slabs in the archaeological submerged site of Baia (Naples, Italy): The case of the “Villa con ingresso a protiro,” Appl. Surf. Sci. 357 (2015) 1369–1379. doi:10.1016/j.apsusc.2015.10.002.

[9] B. Sacchi, S. Vettori, A. Andreotti, L. Rampazzi, M.P. Colombini, P. Tiano, A non-destructive multi-analytical approach for the conservation of the Matera Cathedral (Italy), Submitt. to NDT&E Int. (2018).

[10] G. Alfano, G. Lustrato, C. Belli, E. Zanardini, F. Cappitelli, E. Mello, C. Sorlini, G. Ranalli, The bioremoval of nitrate and sulfate alterations on artistic stonework: The case-study of Matera Cathedral after six years from the treatment, Int. Biodeterior. Biodegrad. 65 (2011) 1004–1011. doi:10.1016/j.ibiod.2011.07.010.

[11] V. Raimondi, G. Cecchi, D. Lognoli, L. Palombi, R. Grönlund, A. Johansson, S. Svanberg, K. Barup, J. Hällström, The fluorescence lidar technique for the remote sensing of photoautotrophic biodeteriogens in the outdoor cultural heritage: A decade of in situ experiments, Int. Biodeterior. Biodegradation. 63 (2009) 823–835. doi:10.1016/j.ibiod.2009.03.006.

[12] S. Orsini, F. Parlanti, I. Bonaduce, Analytical pyrolysis of proteins in samples from artistic and archaeological objects, J. Anal. Appl. Pyrolysis. 124 (2017) 643–657. doi:10.1016/j.jaap.2016.12.017.

[13] R.Y. Stanier, J. Deruelles, R. Rippka, M. Herdman, J.B. Waterbury, Generic Assignments, Strain Histories and Properties of Pure Cultures of Cyanobacteria, Microbiology. 111 (1979) 1–61. doi:10.1099/00221287-111-1-1.

[14] S. Parsons, M. Williams, Introduction, in: S. Parsons (Ed.), Adv. Oxid. Process. Water Wastewater Treat., IWA Publishing, London, 2004: pp. 1–6.

[15] N. Azbar, K. Kestioğlu, T. Yonar, Application of Advanced Oxidation Processes (AOPs) to Wastewater Treatment. Case Studies: Decolourization of Textile Effluents, Detoxification of Olive Mill Effluent, Treatment of Domestic Wastewater, in: A.R. Burk (Ed.), Water Pollut. New Res., Nova Science Publishers, New York, 2005: pp. 99–118.

[16] M. Bressan, L. Liberatore, N. D’Alessandro, L. Tonucci, C. Belli, G. Ranalli, Improved Combined Chemical and Biological Treatments of Olive Oil Mill Wastewaters, J. Agric. Food Chem. 52 (2004) 1228–1233. doi:10.1021/jf035128p.

[17] L. Liberatore, M. Bressan, C. Belli, G. Lustrato, G. Ranalli, Chemical and biological combined treatments for the removal of pesticides from wastewaters, Water, Air, Soil Pollut. 223 (2012) 4751–4759. doi:10.1007/s11270-012-1230-5.

[18] L. Garrel, M. Bonetti, L. Tonucci, N. D’Alessandro, M. Bressan, Photosensitized degradation of cyclohexanol by Fe(III) species in alkaline aqueous media, J. Photochem. Photobiol. A Chem. 179 (2006) 193–199. doi:10.1016/j.jphotochem.2005.08.014.

[19] P. D’Ambrosio, L. Tonucci, N. D’Alessandro, A. Morvillo, S. Sortino, M. Bressan, Water-Soluble Transition-Metal-Phthalocyanines as Singlet Oxygen Photosensitizers in Ene Reactions, Eur. J. Inorg. Chem. 2011 (2011) 503–509. doi:10.1002/ejic.201000784.

[20] L. Tonucci, F. Coccia, M. Bressan, N. D’Alessandro, Mild Photocatalysed and Catalysed Green Oxidation of Lignin: A Useful Pathway to Low-Molecular-Weight Derivatives, Waste and Biomass Valorization. 3 (2012) 165–174. doi:10.1007/s12649-011-9102-6.

[21] G. Ranalli, G. Alfano, C. Belli, G. Lustrato, M.P.P. Colombini, I. Bonaduce, E. Zanardini, P. Abbruscato, F. Cappitelli, C. Sorlini, Biotechnology applied to cultural heritage: Biorestoration of frescoes using viable bacterial cells and enzymes, J. Appl. Microbiol. 98 (2005) 73–83. doi:10.1111/j.1365-2672.2004.02429.x.

[22] G. Lustrato, G. Alfano, A. Andreotti, M.P. Colombini, G. Ranalli, Fast biocleaning of mediaeval frescoes using viable bacterial cells, Int. Biodeterior. Biodegradation. 69 (2012) 51–61. doi:10.1016/j.ibiod.2011.12.010.

[23] P. Bosch-Roig, G. Lustrato, E. Zanardini, G. Ranalli, Biocleaning of Cultural Heritage stone surfaces and frescoes: which delivery system can be the most appropriate?, Ann. Microbiol. 65 (2015) 1227–1241. doi:10.1007/s13213-014-0938-4.

[24] UNI 11432. Beni culturali Materiali lapidei naturali ed artificiali - Misura della capacita di assorbimento di acqua mediante spugna di contatto, (2011) 6.

[25] P. Tiano, C. Pardini, Valutazione in situ dei trattamenti protettivi per il materiale lapideo: proposta di una nuova semplice metodologia, Arkos Sci. E Restauro Dell’architettura. 5 (2004) 30–36.

[26] UNI-EN 15886:2000. Conservation of cultural property - test methods - colour measurement of surfaces, (1994).

[27] M.R. Derrick, D. Stulik, J.M. Landry, Infrared Spectroscopy in Conservation Science, The Getty Conservation Institute, Los Angeles, 1999.

[28] M.J. Wilson, Clay mineralogy: spectroscopic and chemical determinative methods, Chapman & Hall, London, 1994.

[29] I. Petrov, B. Šoptrajanov, Infrared spectrum of whewellite, Spectrochim. Acta Part A Mol. Spectrosc. 31 (1975) 309–316. doi:10.1016/0584-8539(75)80025-0.

[30] J. Liebig, Ueber den Thierschit, Ann. Der Chemie Und Pharm. 86 (1853) 113–115. doi:10.1002/jlac.18530860110.

[31] T. Rosado, M. Gil, J. Mirão, A. Candeias, A.T. Caldeira, Oxalate biofilm formation in mural paintings due to microorganisms – A comprehensive study, Int. Biodeterior. Biodegradation. 85 (2013) 1–7. doi:10.1016/j.ibiod.2013.06.013.

[32] I. Arrizabalaga, O. Gómez-Laserna, J. Aramendia, G. Arana, J.M. Madariaga, Applicability of a Diffuse Reflectance Infrared Fourier Transform handheld spectrometer to perform in situ analyses on Cultural Heritage materials, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 129 (2014) 259–267. doi:10.1016/j.saa.2014.03.096.

[33] A. Bonazza, C. Natali, N. Ghedini, C. Vaccaro, C. Sabbioni, Oxalate Patinas on Stone Monuments in the Venetian Lagoon: Characterization and Origin, Int. J. Archit. Herit. 9 (2015) 542–552. doi:10.1080/15583058.2013.837546.

[34] M. Realini, L. Toniolo, eds., The Oxalate Films in the Conservation of Works of Art, in: Editeam, 1996.

[35] A. VV., International Symposium on the Oxalate Films: Origin and Significance in the Conservation of Works of Art, in: 1989.

[36] M. Vendrell-Saz, W.E. Krumbein, C. Urzi, M. Garcia-Vallès, Are patinas of Mediterranean monuments really related to the rock substrate?, in: 8th Int. Congr. Deterior. Conserv. Stone, Berlin, 30 Sept.-4 Oct. 1996, 1996: pp. 609–624.

[37] M. Garcia-Vallès, M. Vendrell-Saz, J. Molera, F. Blazquez, Interaction of rock and atmosphere: patinas on Mediterranean monuments, Environ. Geol. 36 (1998) 137–149. doi:10.1007/s002540050329.

[38] F. Cariati, L. Rampazzi, L. Toniolo, A. Pozzi, Calcium oxalate films on stone surfaces: experimental assessment of the chemical formation, Stud. Conserv. 45 (2000) 180–188. doi:10.2307/1506764.

[39] L. Rampazzi, A. Andreotti, I. Bonaduce, M.P. Colombini, C. Colombo, L. Toniolo, Analytical investigation of calcium oxalate films on marble monuments, Talanta. 63 (2004) 967–977. doi:10.1016/j.talanta.2004.01.005.

[40] R. Bugini, C. Corti, L. Folli, L. Rampazzi, Unveiling the Use of Creta in Roman Plasters: Analysis of Clay Wall Paintings From Brixia (Italy), Archaeometry. 59 (2017) 84–95. doi:10.1111/arcm.12254.

Actions (login required)

View Item View Item



Downloads per month over past year

View more statistics