On the use of trace elements in ancient necropolis studies: Overview and ICP-MS application to the case study of Valdaro site, Italy

Corti, Cristina, Rampazzi, Laura, Ravedoni, Cristina and Giussani, Barbara (2013) On the use of trace elements in ancient necropolis studies: Overview and ICP-MS application to the case study of Valdaro site, Italy. Microchemical Journal (110). pp. 614-623. ISSN 0026-265X [Article]

[img]
Preview
PDF
On the use of trace elements in ancient necropolis studies Overview and ICP-MS application to the case study of Valdaro site, Italy.pdf

Download (344kB) | Preview

Abstract (in English)

The cross-cutting study of archaeological human remains is an important tool for improving the knowledge of the past civilities. Bones are actually bio-archives, storing information about the lifestyles of the individuals, the place where they lived, the migration habits. In particular, some peculiar trace elements (such as strontium and zinc) are considered indicators of the so-called paleodiet, i.e. whether characterized by vegetables, cereals or meat. A complete overview of the concerning literature is the starting point of this work. A straightforward optimized methodology for the study of ancient bones is proposed coupling for the first time trace element determination by ICP-MS (Mg, Mn, Cu, Zn, Sr and Pb were investigated) and statistical data analysis. The protocol was applied to samples coming from a necropolis (dated from Neolithic to Bronze Age) found in Northern Italy including ‘The Valdaro Lovers’, a rare double burial where the two skeletons were facing each other with their arms wrapped around in an enduring embrace. Principal Component Analysis and Discriminant Analysis permitted to correctly classify individuals by the historical period in which they lived according to the archaeological and anthropological information. The results were compared with those found in the literature and a critical discussion on the use of trace metals in this case study is given.

Item Type: Article
Authors:
Authors
Email
Corti, Cristina
UNSPECIFIED
Rampazzi, Laura
laura.rampazzi@uninsubria.it
Ravedoni, Cristina
UNSPECIFIED
Giussani, Barbara
UNSPECIFIED
Languages: English
Keywords: Prehistoric bones; ICP-MS; Trace elements; Ancient remains; Principal Component Analysis; Linear Discriminant Analysis; Archaeological heritage; archaeological remains; necropoles; italy
Subjects: A. THEORETICAL AND GENERAL ASPECTS > 05. History of archaeology
B. ARCHAEOLOGY > 04. Archaeological finds
B. ARCHAEOLOGY > 05. Archaeological research
B. ARCHAEOLOGY > 10. Prehistoric site
F.SCIENTIFIC TECHNIQUES AND METHODOLOGIES OF CONSERVATION > 06. Analysis of materials
F.SCIENTIFIC TECHNIQUES AND METHODOLOGIES OF CONSERVATION > 09. Archaeometry
F.SCIENTIFIC TECHNIQUES AND METHODOLOGIES OF CONSERVATION > 50. Statistical analysis
P. GEOGRAPHIC AREAS > 05. Europe
Name of monument, town, site, museum: S. Giorgio Valdaro (Mantua, Italy)
Number: 110
ISSN: 0026-265X
Depositing User: dr Laura Rampazzi
Date Deposited: 02 Feb 2018 09:53
Last Modified: 02 Feb 2018 09:53
References: [1] R. Djingova, B. Zlateva, I. Kuleff, On the possibilities of inductively coupled plasma mass spectrometry for analysis of archaeological bones for reconstruction of paleodiet, Talanta, 63 (2004) 785-789.

[2] L.L. Klepinger, Nutritional assessment from bone, Annual review of anthropology, 13 (1984) 75-96.

[3] J.B. Lambert, C.B. Szpunar, J.E. Buikstra, Chemical analysis of excavated human bone from Middle and Late Woodland sites, Archaeometry, 21 (1979) 115-129.

[4] M.L. Carvalho, A.F. Marques, M.T. Lima, U. Reus, Trace elements distribution and post-mortem intake in human bones from Middle Age by total reflection X-ray fluorescence, in: Spectrochimica Acta Part B, 2004, pp. 1251-1257.

[5] F.D. Pate, J.T. Hutton, K. Norrish, Ionic exchange between soil solution and bone: toward a predictive model, in: Applied Geochemistry, 1989, pp. 303-316.

[6] L.A. Beck, Bivariate analysis of trace elements in bone, Journal of Human Evolution, 14 (1985) 493-502.

[7] M. Busetto, L. Giordani, A. Brandone, C. Cattaneo, A. Mazzucchi, Dietary investigation by trace element content in bones of ancient inhabitants of Northern Italy, in: Journal of Radioanalytical and Nuclear Chemistry, 2008, pp. 355-363.

[8] J.F. Farnum, M.D. Glascock, M.K. Sandford, S. Gerritsen, Trace elements in ancient human bone and associated soil using NAA, in: Journal of Radioanalytical and Nuclear Chemistry, 1995, pp. 267-274.

[9] I. Janos, L. Szathmary, E. Nadas, A. Beni, Z. Dinya, E. Mathe, Evaluation of elemental status of ancient human bone samples from Northeastern Hungary dated to the 10th century AD by XRF, Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Atoms, 269 (2011) 2593-2599.

[10] J.B. Lambert, S.V. Simpson, C.B. Szpunar, J.E. Buikstra, Ancient human diet from inorganic analysis of bone, Accounts of chemical research, 17 (1984) 298-305.

[11] A.L. Rheingold, S. Hues, M.N. Cohen, Strontium and zinc content in bones as an indication of diet, Journal of Chemical Education, 60 (1983) 233-234.

[12] H. Toots, M.R. Voorhies, Strontium in fossil bones and the reconstruction of food chains, Science, New Series, 149 (1965) 854-855.

[13] R.L. Blakely, L.A. Beck, Trace elements, nutritional status, and social stratification at Etowah, Georgia, Annals of New York Academy of Sciences, 376 (1981) 417-431.

[14] K. Szostek, H. Glab, A. Szczepanek, K. Kaczanowski, Trace element analysis of Bronze Age skeletal and crematory graves from Southern Poland for diet reconstruction, Homo, 53 (2003) 235-246.

[15] M.L. Carvalho, A.F. Marques, Diagenesis evaluation in Middle Ages human bones using EDXRF, X-Ray Spectrometry, 37 (2008) 32-36.

[16] R.E.M. Hedges, Bone diagenesis: An overview of processes, Archaeometry, 44 (2002) 319-328.

[17] G. Quarta, K. Butalag, L. Calcagnile, M. D'Elia, P. Arthur, M. Tinelli, A. Caramia, IBA analyses and lead concentration measurements of AMS-14C dated bones from two medieval sites in Italy, in: Nuclear Instruments and Methods in Physics Research B, 2008, pp. 2343-2347.

[18] M.M. Shafer, M. Siker, J.T. Overdier, P.C. Ramsl, M. Teschler-Nicola, P.M. Farrell, Enhanced methods for assessment of the trace element composition of Iron Age bone, Science of the Total Environment, 401 (2008) 144-161.

[19] R.A. Bentley, R. Krause, T.D. Price, B. Kaufmann, Human mobility at the Early Neolithic settlement of Vaihingen, Germany: evidence from strontium isotope analysis, Archaeometry, 45 (2003) 471-486.

[20] T.D. Price, L. Manzanilla, W.D. Middleton, Immigration and the ancient city of Teotihuacan in Mexico: a study using strontium isotope ratios in human bone and teeth, 27 (2000) 903-913.

[21] N.M. Slovak, A. Paytan, B.A. Wiegand, Reconstructing Middle Horizon mobility patterns on the coast of Peru through strontium isotope analysis, Journal of Archaeological Science, 36 (2009) 157-165.

[22] L.-S.J. Allmäe Raili, Heapost Leiu, Verš Evelin, The content of chemical elements in archaeological human bones as a source of nutrition research, Papers on Anthropology, 21 (2012) 27-49.

[23] J.P. Baraybar, C. De la Rua, Reconstruction of Diet with Trace Elements of Bone at the Chalcolithic Site of Pico Ramos, Basque Country, Spain, Journal of Archaeological Science, 24 (1997) 355–364.

[24] M.V. Dobrovolskaya, Upper Palaeolithic and Late Stone Age human diet, Journal of Physiological Anthropology, 24 (2005) 433-438.

[25] F. Giorgi, F. Bartoli, P. Iacumin, F. Mallegni, Oligoelements and isotopic geochemistry: a multidisciplinary approach to the reconstruction of the paleodiet, Human Evolution, 20 (2005) 55-82.

[26] V. Scattarella, S. Sublimi Saponetti, L. Laraspata, F. Bartoli, F. Bertoldi, The individual of the Early Neolithic of Balsignano (Bari, Italy): a study of some skeletal indicators of stress and palaeonutritional analysis, in: Human Evolution, 2002, pp. 143-155.

[27] H. Schutkowski, B. Herrmann, F. Wiedemann, H. Bocherens, G. Grupe, Diet, status and decomposition at Weingarten: trace element and isotope analyses on Early Mediaeval skeletal material, Journal of Archaeological Science, 26 (1999) 675-685.

[28] V. Chavagnac, J.A. Milton, D.R.H. Green, J. Breuer, O. Bruguier, D.E. Jacob, T. Jong, G.D. Kamenov, J. Le Huray, Y. Liu, M.R. Palmer, S. Pourtalès, I. Roduhskin, A. Soldati, C.N. Trueman, H. Yuan, Towards the development of a fossil bone geochemical standard: An inter-laboratory study, Analytica Chimica Acta, 599 (2007) 177-190.

[29] K.M. Lee, J. Appleton, M. Cooke, K. Sawicka-Kapusta, M. Damek, Development of a method for the determination of heavy metals in calcified tissues by inductively coupled plasma-mass spectrometry, Fresenius' Journal of Analytical Chemistry, 364 (1999) 245-248.

[30] M. Lebon, I. Reiche, J.-J. Bahain, C. Chadefaux, A.-M. Moigne, F. Fröhlich, F. Sémah, H.P. Schwarcz, C. Falguères, New parameters for the characterization of diagenetic alterations and heat-induced changes of fossil bone mineral using Fourier transform infrared spectrometry, Journal of Archaeological Science, 37 (2010) 2265-2276.

[31] L.M. Miller, V. Vairavamurthy, M.R. Chance, R. Mendelsohn, E.P. Paschalis, F. Betts, A.L. Boskey, In situ analysis of mineral content and crystallinity in bone using infrared micro-spectroscopy of the ν4 PO4 3- vibration, Biochimica et Biophysica Acta, 1527 (2001) 11-19.

[32] I. Reiche, L. Favre-Quattropani, C. Vignaud, H. Bocherens, L. Charlet, M. Menu, A multi-analytical study of bone diagenesis: the Neolithic site of bercy (Paris, France), 14 (2003) 1608-1619.

[33] A. Sillen, J.C. Sealy, Diagenesis of Strontium in Fossil Bone: A Reconsideration of Nelson et al. (1986), Journal of Archaeological Science, 22 (1995) 313-320.

[34] T.A. Surovell, M.C. Stiner, Standardizing Infra-red Measures of Bone Mineral Crystallinity: an Experimental Approach, Journal of Archaeological Science, 28 (2001) 633-642.

[35] G. Piga, A. Santos-Cubedo, S. Moya Solà, A. Brunetti, A. Malgosa, S. Enzo, An X-ray Diffraction (XRD) and X-ray Fluorescence (XRF) investigation in human and animal fossil bones from Holocene to Middle Triassic, Journal of Archaeological Science, 36 (2009) 1857-1868.

[36] T. Devièse, M.P. Colombini, M. Regert, B.H. Stuart, J.P. Guerbois, TGMS analysis of archaeological bone from burials of the late Roman period, Journal of Thermal Analysis and Calorimetry, 99 (2010) 811-813.

[37] M. Tomassetti, F. Marini, L. Campanella, A. Coppa, Study of modern or ancient collagen and human fossil bones from an archaeological site of middle Nile by thermal analysis and chemometrics, Microchemical Journal, 108 (2013) 7-13.

[38] M. Arnay-de-la-Rosa, E. Gonzalez-Reimers, Y. Yanes, C.S. Romanek, J.E. Noakes, L. Galindo-Martin, Paleonutritional and paleodietary survey on prehistoric humans from Las Canadas del Teide (Tenerife, Canary Islands) based on chemical and histological analysis of bone, Journal of Archaeological Science, 38 (2011) 884-895.

[39] I. Baranowska, K. Czernicki, R. Aleksandrowicz, The analysis of lead, cadmium, zinc, copper and nickel content in human bones from the Upper Silesian industrial district, The Science of the Total Environment, 159 (1995) 155-162.

[40] H.-W. Kuo, S.-M. Kuo, C.-H. Chou, T.-C. Lee, Determination of 14 elements in Taiwanese bones, The Science of the Total Environment, 255 (2000) 45-54.

[41] M.J. Martínez-García, J.M. Moreno, J. Moreno-Clavel, N. Vergara, A. García-Sánchez, A. Guillamón, M. Portí, S. Moreno-Grau, Heavy metals in human bones in different historical epochs, Science of the Total Environment, 348 (2005) 51-72.

[42] A.-F. Maurer, M. Gerard, A. Person, I. Barrientos, P. del Carmen Ruiz, V. Darras, C. Durlet, V. Zeitoun, M. Renard, B. Faugère, Intra-skeletal variability in trace elemental content of Precolumbian Chupicuaro human bones: the record of post-mortem alteration and a tool for palaeodietary reconstruction, Journal of Archaeological Science, 38 (2011) 1784-1797.

[43] N.B. Roberts, H.P.J. Walsh, L. Klenerman, S.A. Kelly, T.R. Helliwell, Determination of Elements in Human Femoral Bone Using Inductively Coupled Plasma Atomic Emission Spectrometry and Inductively Coupled Plasma Mass Spectrometry, Journal of Analytical Atomic Spectrometry, 11 (1996) 133-138.

[44] J. Ščančar, R. Milačič, M. Benedik, P. Bukovec, Determination of trace elements and calcium in bone of the human iliac crest by atomic absorption spectrometry, Clinica Chimica Acta, 293 (2000) 187-197.

[45] A.C. Todd, P.J. Parsons, S. Tang, E.L. Moshier, Individual Variability in Human Tibia Lead Concentration, Environmental Health Perspectives, 109 (2001) 1139-1143.

[46] L. Wittmers, A. Aufderheide, G. Rapp, A. Alich, Archaeological contributions of skeletal lead analysis, Accounts of Chemical Research, 35 (2002) 669-675.

[47] N.P. Zaksas, T.T. Sultangazieva, V.A. Gerasimov, Determination of trace elements in bone by two-jet plasma atomic emission spectrometry, Analytical and Bioanalytical Chemistry, 391 (2008) 687-693.

[48] B. Zlateva, R. Djingova, I. Kuleff, On the possibilities of ICP-AES for analysis of archaeological bones, in: Central European Science Journals, 2003, pp. 201-221.

[49] S. Jankuhn, J. Vogt, T. Butz, Determination of the elemental status of ancient human bones from Bockenheim/Rheinland–Pfalz by PIGE and PIXE, Nuclear Instruments and Methods in Physics Research B, 161-163 (2000) 894-897.

[50] I. Reiche, L. Favre-Quattropani, T. Caligaro, J. Salomon, H. Bocherens, L. Charlet, M. Menu, Trace element composition of archaeological bones and post-mortem alteration in the burial environment, in: Nuclear Instruments and Methods in Physics Research B, 1999, pp. 656-662.

[51] D. Spemann, S. Jankuhn, J. Vogt, T. Butz, Ionoluminescence investigations of ancient human bone with an external ion beam, Nuclear Instruments and Methods in Physics Research B, 161-163 (2000) 867-871.

[52] U. Tapper, H. Vuorinen, H. Mussalo-Rauhamaa, Elemental analysis fo long bones of infants from Ficana excavations, Nuclear Instruments and Methods in Physics Research, B49 (1990) 245-249.

[53] D.E.B. Fleming, D.E. Blom, Evidence for lead diagenesis in ancient bones of the Southern Andes, in: Nuclear Instruments and Methods in Physics Research B, 2007, pp. 41-45.

[54] R.K. Harritt, S.C. Radosevich, Results of Instrument Neutron-Activation trace-element analysis of human remains from the Naknek Region, Southwest Alaska, in: American Antiquity, 1992, pp. 288-299.

[55] V. Zaichick, INAA of Ca, Cl, K, Mg, Mn, Na, P, and Sr contents in the human cortical and trabecular bone, Journal of Radioanalytical and Nuclear Chemistry, 269 (2006) 653-659.

[56] D.J. Bellis, K.M. Hetter, M.F. Verostek, P. Parsons, Characterization of candidate reference materials for bone lead via interlaboratory study and double isotope dilution mass spectrometry, Journal of Analytical Atomic Spectrometry, 23 (2008) 298-308.

[57] D. De Muynck, C. Cloquet, E. Smits, F.A. de Wolff, G. Quitté, L. Moens, F. Vanhaecke, Lead isotopic analysis of infant bone tissue dating from the Roman era via multicollector ICP – mass spectrometry, Analytical and Bioanalytical Chemistry, 390 (2008) 477-486.

[58] D. De Muynck, C. Cloquet, F. Vanhaecke, Development of a new method for Pb isotopic analysis of archaeological artefacts using single-collector ICP-dynamic reaction cell-MS, Journal of Analytical Atomic Spectrometry, 23 (2008) 62-71.

[59] D. De Muynck, F. Vanhaecke, Development of a method based on inductively coupled plasma-dynamic reaction cell-mass spectrometry for the simultaneous determination of phosphorus, calcium and strontium in bone and dental tissue, Spectrochimica Acta Part B, 64 (2009) 408-415.

[60] K.M. Hetter, D.J. Bellis, C. Geraghty, A.C. Todd, P.J. Parsons, Development of candidate reference materials for the measurement of lead in bone, Analytical and Bioanalytical Chemistry, 391 (2008) 2011-2021.

[61] T.A. Hinners, R. Hughes, P.M. Outridge, W.J. Davis, K. Simon, D.R. Woolard, Interlaboratory comparison of mass spectrometric methods for lead isotopes and trace elements in NIST SRM 1400 Bone Ash, Journal of Analytical Atomic Spectrometry, 13 (1998) 963-970.

[62] K.J. Knudson, B. O’Donnabhain, C. Carver, R. Cleland, T.D. Price, Migration and Viking Dublin: paleomobility and paleodiet through isotopic analyses, Journal of Archaeological Science, 39 (2012) 308-320.

[63] T. Prohaska, C. Latkoczy, G. Schultheis, M. Teschler-Nicola, G. Stingeder, Investigation of Sr isotope ratios in prehistoric human bones and teeth using laser ablation ICP-MS and ICP-MS after Rb/Sr separation, Journal of Analytical Atomic Spectroscopy, 17 (2002) 887-891.

[64] S. Safont, A. Malgosa, M.E. Subirà, G. J., Can Trace Elements in Fossils Provide Information about Palaeodiet?, in: International Journal of Osteoarchaeology, 1998, pp. 23-37.

[65] D. De Muynck, G. Huelga-Suarez, L. Van Heghe, P. Degryse, F. Vanhaecke, Systematic evaluation of a strontium-specific extraction chromatographic resin for obtaining a purified Sr fraction with quantitative recovery from complex and Ca-rich matrices, Journal of Analytical Atomic Spectrometry, 24 (2009) 1498-1510.

[66] N.W. Bower, S.A. McCants, J.M. Custodio, M.E. Ketterer, S.R. Getty, J.M. Hoffman, Human lead exposure in a late 19th century mental asylum population, Science of the Total Environment, 372 (2007) 463-473.

[67] M. Grotti, M.L. Abelmoschi, S. Dalla Riva, F. Soggia, R. Frache, Determination of lead in bone tissues by axially viewed inductively coupled plasma multichanneled-based emission spectrometry, Analytical Bioanalytical Chemistry, 381 (2005) 1395-1400.

[68] C. Latkoczy, T. Prohaska, G. Stingeder, M. Teschler-Nicola, Strontium isotope ratio measurements in prehistoric human bone samples by means of high-resolution inductively coupled plasma mass spectrometry (HR-ICP-MS), Journal of Analytical Atomic Spectrometry, 13 (1998) 561-566.

[69] L. Liang, P.C. D'Haese, L.V. Lamberts, M.E. De Broe, Direct calibration for determining aluminum in bone and soft tissues by graphite furnace atomic absorption spectrometry, Clinical Chemistry, 37 (1991) 461-466.

[70] K. Oakberg, T. Levy, P. Smith, A method for skeletal arsenic analysis, applied to the Chalcolithic copper smelting site of Shiqmin, Israel, in: Journal of Archaeological Science, 2000, pp. 895-901.

[71] S. Tang, P.J. Parsons, W. Slavin, Rapid and reliable method for the determination of aluminum in bone by electrothermal atomic absorption spectrometry, The Analyst, 121 (1996) 195-200.

[72] Y. Zhang, Y. Zhang, Y. Tong, S. Qiu, X. Wu, K. Dai, Multi-element determination in cancellous bone of human femoral head by PIXE, Journal of Radioanalytical and Nuclear Chemistry, Letters, 212 (1996) 341-351.

[73] Y.Y. Zong, P.J. Parsons, W. Slavin, Accurate and precise measurements of lead in bone using electrothermal atomic absorption spectrometry with Zeeman-effect background correction, Journal of Analytical Atomic Spectrometry, 11 (1996) 25-30.

[74] K.J. Knudson, T.D. Price, Utility of multiple chemical techniques in archaeological residential mobility studies: case studies from Tiwanaku- and Chiribaya-affiliated sites in the Andes, American Journal of Physical Anthropology, 132 (2007) 25-39.

[75] L.E.J. Wittmers, A.C. Aufderheide, J.G. Pounds, K.W. Jones, J.L.P. Angel, Problems in determination of skeletal lead burden in archaeological samples: an example from the first African Baptist Church population, American Journal of Physical Anthropology, 136 (2008) 379-386.

[76] C. Scarabino, C. Lubritto, A. Proto, M. Rubino, G. Fiengo, F. Marzaioli, I. Passariello, G. Busiello, A. Fortunato, D. Alfano, C. Sabbarese, D. Rogalla, N. De Cesare, A. D'Onofrio, F. Terrasi, Paleodiet characterisation of an etrurian population of Pontecagnano (Italy) by Isotope Ratio Mass Spectrometry (IRMS) and Atomic Absorption Spectrometry (AAS), Isotopes in Environmental and Health Studies, 42 (2006) 151-158.

[77] S. Mays, Bone strontium: calcium ratios and duration of breastfeeding in a Mediaeval skeletal population, Journal of Archaeological Science, 30 (2003) 731-741.

[78] D.A. Nelson, N.J. Sauer, An evaluation of postdepositional changes in the trace element content of human bone, in: American Antiquity, 1984, pp. 141-147.

[79] T. Nakashima, H. Hayashi, H. Tashiro, T. Matsushita, Gender and hierarchical differences in lead-contaminated Japanese bone from the Edo Period, Journal of Occupational Health, 40 (1998) 55-60.

[80] E. González-Reimers, J. Velasco-Vázquez, M. Arnay-de-la-Rosa, F. Santolaria-Fernández, L. Galindo-Martín, Paleonutritional analysis of the pre-Hispanic population from Fuerteventura (Canary Islands), The Science of the Total Environment, 264 (2001) 215-220.

[81] E. González-Reimers, J. Velasco-Vázquez, M. Arnay-de-la-Rosa, V. Alberto-Barroso, L. Galindo-Martín, F. Santolaria-Fernández, Bone cadmium and lead in prehistoric inhabitants and domestic animals from Gran Canaria, The Science of the Total Environment, 301 (2003) 97-103.

[82] J.B. Edward, R.A. Benfer, J.S. Morris, The effects of dry ashing on the composition of human and animal bone, Biological Trace Element Research, 25 (1990) 219-231.

[83] E. Engström, A. Stenberg, S. Senioukh, R. Edelbro, D.C. Baxter, I. Rodushkin, Multi-elemental characterization of soft biological tissues by inductively coupled plasma-sector field mass spectrometry, Analytica Chimica Acta, 521 (2004) 123-135.

[84] C. Ravedoni, Recovery and multidisciplinary study of skeletons of S. Giorgio Valdaro (Mantova). in: International School of Advanced Studies, University of Camerino (Italy), 2011.

[85] A. Simonetti, M.R. Buzon, R.A. Creaser, In situ elemental and Sr isotope investigation of human tooth enamel by Laser Ablation-(MC)-ICP-MS: successes and pitfalls, Archaeometry, 50 (2008) 371-385.

[86] R.E. Wolf, Analysis of lead (Pb) in antacids and calcium compounds for Proposition 65 compliance, Atomic Spectroscopy, 18 (1997) 169-174.

[87] E.H. Evans, J.J. Giglio, Interferences in Inductively Coupled Plasma Mass Spectrometry. A review., Journal of Analytical Atomic Spectrometry, 8 (1993) 1-18.

[88] L.A. Currie, Nomenclature in evaluation of analytical methods including detection and quantification capabilities (IUPAC recommendations 1995), Pure and Applied Chemistry, 67 (1995) 1699-1723.

[89] J.E. Ericson, D.R. Smith, A.R. Flegal, Skeletal concentrations of lead, cadmium, zinc and silver in ancient North-American Pecos Indians, Environmental Health Perspectives, 93 (1991) 217-223.

[90] G. Grupe, T.D. Price, P. Schröter, F. Söllner, C.M. Johnson, B.L. Beard, Mobility of Bell Beaker people revealed by strontium isotope ratios of tooth and bone: a study of southern Bavarian skeletal remains, Applied Geochemistry, 12 (1997) 517-525.

[91] J. Zapata, C. Pérez-Sirvent, M.J. Martínez-Sánchez, P. Tovar, Diagenesis, not biogenesis: Two late Roman skeletal examples, in: Science of the Total Environment, 2006, pp. 357-368.

[92] J. Edward, J.M. Fossey, L. Yaffe, Analysis by Neutron Activation of Human Bone from the Hellenistic Cemetery at Asine, Greece, in: Journal of Field Archaeology, 1984, pp. 37-46.

[93] E.M. Sowden, S.R. Stitch, Trace elements in human tissue. 2. Estimation of the concentrations of stable strontium and barium in human bone, The Biochemical journal, 67 (1957) 104-109.

[94] C. Malone, The Italian Neolithic: A synthesis of research, Journal of World Prehistory, 17 (2003) 235-312.

[95] M. Rottoli, E. Castiglioni, Prehistory of plant growing and collecting in northern Italy, based on seed remains from the early Neolithic to the Chalcolithic (c. 5600-2100 cal B. C.), Vegetation History and Archaeobotany, 18 (2009) 91-103.

[96] M.J. Schoeninger, C.S. Peebles, Effects of mollusc eating on human bone strontium levels, Journal of Archaeological Science, 8 (1981) 391-397.
URI: https://openarchive.icomos.org/id/eprint/1861

Actions (login required)

View Item View Item

Metadata

Downloads

Downloads per month over past year

View more statistics

© ICOMOS
https://www.icomos.org/en
documentation(at)icomos.org